Numerical solution of partial differential equations with variable coefficients with an operational approach to the tau method
نویسندگان
چکیده
منابع مشابه
An Approximate Method for System of Nonlinear Volterra Integro-Differential Equations with Variable Coefficients
In this paper, we apply the differential transform (DT) method for finding approximate solution of the system of linear and nonlinear Volterra integro-differential equations with variable coefficients, especially of higher order. We also obtain an error bound for the approximate solution. Since, in this method the coefficients of Taylor series expansion of solution is obtained by a recurrence r...
متن کاملOperational matrices with respect to Hermite polynomials and their applications in solving linear differential equations with variable coefficients
In this paper, a new and efficient approach is applied for numerical approximation of the linear differential equations with variable coeffcients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion coeffcients for the moments of derivatives of any differentiable function in terms of the original expansion coefficients of the f...
متن کاملTau Numerical Solution of Volterra Integro-Differential Equations With Arbitrary Polynomial Bases
متن کامل
Using operational matrix for numerical solution of fractional differential equations
In this article, we have discussed a new application of modification of hat functions on nonlinear multi-order fractional differential equations. The operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. The method provides the solution in the form of a rapidly convergent series. Furthermore, error analysis of the pro...
متن کاملAn analytic solution for a non-local initial-boundary value problem including a partial differential equation with variable coefficients
This paper considers a non-local initial-boundary value problem containing a first order partial differential equation with variable coefficients. At first, the non-self-adjoint spectral problem is derived. Then its adjoint problem is calculated. After that, for the adjoint problem the associated eigenvalues and the subsequent eigenfunctions are determined. Finally the convergence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 1984
ISSN: 0898-1221
DOI: 10.1016/0898-1221(84)90081-6